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Single ping clutter reduction:
segmentation using Markov random

fields

R. Laterveer

Executive Summary:

Low frequency active sonar has been highlighted by a number of NATO nations
as an important component of the next generation of undersea defence systems.
The use of low frequencies in a shallow water environment, however, is known
to result in a high false alarm rate due to the large number of clutter like
returns. This high false alarm rate can overload automatic tracking and clas-
sification algorithms. The SACLANT Undersea Research Centre is currently
investigating techniques to aid in the reduction of these false alarms without a
reduction in detection probability.

This report describes an automatic method of image segmentation based on
Markov random field modelling to reduce clutter. The method looks at de-
tections over both range and bearing. It removes small objects which do not
exhibit the right signature over beams. Separate detections corresponding to
one large object are clumped together to form one single object. Objects too
large to be a submarine can then be removed.

The Markov random field model used is based on the a priori physical and
probabilistic knowledge of the sonar picture. It assumes that, statistically, a
target has, on average, a large signal to noise ratio (SNR) and that, on a local
scale, the sonar display exhibits homogeneity. The model is tuned to remove
as much clutter as possible while retaining the target.

The algorithm was tested over a large number of sonar images. The perfor-
mance is determined using several measures of performance including proba-
bility of detection and number of false alarm objects, i.e. connected detections.
The number of false alarm objects was reduced by almost an order of magnitude
while retaining more than 90% of the target detections.

With simulated sonar pictures the influence of target SNR on the segmentation
is investigated. The algorithm performs well for high SNR targets but detection
probability drops for low SNR targets. This is not a big problem as usually
targets have sufficient SNR.

Future work includes evaluating the algorithm for other data sets and coupling
it to automatic tracking and classification algorithms.
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Single ping clutter reduction:
segmentation using Markov random
fields

R. Laterveer

Abstract:

The use of low frequency active sonar in shallow water leads to large numbers of
clutter detections. This high false alarm rate can overload automatic tracking
and classification algorithms. Traditional detection algorithms operate on each
beam output individually searching for targets at all ranges. However, the
target echo and bottom features may extend over several beams, either because
a reflector is extended over space or because of the sidelobe structure of the
beamformer. This suggest to associate detections over bearing, e.g. apply
image processing to the range-bearing sonar data.

This report describes an automatic method of image segmentation based on
a Markov random field model to reduce clutter. The segmentation is treated
as a labelling problem, i.e. assign to each range-bearing cell either a target-
or background label. It removes small objects which do not exhibit the right
signature over beams. Separate detections corresponding to one large reflector
are clumped together to form one single object. Objects too large to be a
submarine can then be removed.

The Markov random field model uses a priori physical and probabilistic knowl-
edge of the range-bearing sonar picture. It assumes that the background is
Rayleigh distributed, a target has, on average, a large signal to noise ratio
(SNR) and that the label at each range-bearing cell is influenced by its neigh-
bouring cells. An iterative algorithm is used to produce a maximum a posteriori
estimate for the labelling. The model parameters are tuned to remove as much
clutter as possible without substantially reducing the probability of detection.

The algorithm was tested over a large number of sonar images. The perfor-
mance is determined using several measures of performance including proba-
bility of detection and number of false alarm objects, i.e. connected detections.
The number of false alarm objects was reduced by almost an order of magnitude
while retaining more than 90% of the target detections.

To test the influence of target SNR on the segmentation, simulated sonar pic-
tures, containing a target of known SNR, were produced. The algorithm per-
forms well for high SNR targets but those with low SNR have lower detection
probability. This is not a big problem as usually targets have sufficient SNR.

Keywords: clutter reduction o detection o classification o segmentation o
low frequency active sonar o Markov random fields o image processing
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1
Introduction

Low frequency active sonar has been highlighted by a number of NATO nations as an
important component of the next generation of undersea defence systems. The use
of low frequencies in a shallow water environment, however, is known to result in a
high false alarm rate due to the large number of clutter like returns. The SACLANT
Undersea Research Centre is currently investigating automatic techniques to aid in
the reduction of these false alarms without a reduction in detection probability.

Detecting a target is usually not a problem, the SNR is usually sufficient. The
large number of false detections makes finding the target difficult. Since present
thinking is that the next stage of processing is likely to be some kind of target/non-
target classification using algorithms such as tracking and fixed-feature removal the
large number of false targets may make the computational load of such an approach
prohibitive.

Automatic processing becomes especially important for broadband sonar . Due to
the higher resolution of a broadband sonar there is much more information in the
sonar picture, making it difficult or even impossible to present it all to a sonar op-
erator. Therefore automatic processing is necessary to select the important features
of the sonar picture.

This report discusses what is perceived to be a crucial first step in categorisation:
the separation of regions of extended background reverberation. To this end we
describe a segmentation type of algorithm which may be considered as a first stage
classifier which will allow the estimation of size and position of extended objects
and consequently facilitate their removal from the sonar image, and/or subsequent
classification analysis.

In [1] an image segmentation algorithm based on a Markov random field (MRF)
model was proposed. In this report the algorithm will be refined and its performance
will be evaluated on a set of sonar pictures.

The segmentation is treated as a labelling problem, i.e. assign to each range-bearing
cell either a target- or background label. The object is then, given a range-bearing
sonar picture to determine the optimal labelling. The MRF model allows the opti-
misation to be put into a Bayes framework, the optimal labelling can be determined
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by a maximum a postiori (MAP) estimate obtained through an iterative algorithm.

The Markov random field model uses a priori physical and probabilistic knowledge
of the range-bearing sonar picture. The assumptions are:

"* a possible target has a certain minimum size.

"* the background follows a Rayleigh probability density.

"* a target echo has, on average, a large signal to noise ratio (SNR).

"* on a local scale, the sonar display exhibits homogeneity.

The model parameters are tuned to remove as much clutter as possible without
substantially reducing the probability of detection.

In Sect. 2 the construction of the sonar image is discussed. It presents the signal
processing prior to the segmentation and discusses the choices made. Section 3 gives
a brief review of MRF modelling while Sect. 4 introduces the MRF model we use
for active sonar. Section 5 shows the results of the algorithm applied to a data set.
The model parameters are tuned for best performance. The influence of target SNR
is investigated. Conclusions and prospects are presented in Sect. 6.

NATO UNCLASSIFIED -2-
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2
Sonar image description

The data set used in this study is known to have a lot of clutter and we have ground
truth knowledge about range and bearing of up to two targets. Therefore it is highly
suitable to study detection performance and false alarm reduction.

The data were collected using an active source and the Centre's low frequency towed
line array as receiver. The transmission was a 2.29 s hyperbolic frequency modulated
(HFM) waveform sweeping from 460 to 565 Hz. Assuming 750 m/s for the two-way
sound speed this results in a range resolution of slightly less than 7.5 m.

The detection processing is illustrated in Fig. 1.

The data were beamformed using 128 hydrophones at one metre spacing using Hann
shading over the array. The beams were equally spaced in cosine-space, and over-
lapped 3 dB down from their main response axis at 700 Hz, resulting in 86 beams
spanning from forward to aft endfire.

Each beam was matched filtered and basebanded so that the centre of the waveform,
512.5 Hz, was shifted to zero Hz, and downsampled to a sampling frequency of 250 Hz
so that each resolution cell contained about 2 samples.

The beams were normalised using a split window trimmed-mean normaliser [2]. The
normalising window consisted of leading and lagging windows of 100 resolution cells
each with a guard band of 5 resolution cells before and after the sample to be
normalised. The samples in the normalising window were ordered and the lower
and upper quarter were removed. The remaining samples were used to estimate the
power in the auxiliary window. After normalisation, the sampling frequency was
again reduced by a factor of two to 125 Hz, by taking the maximum in a window of
two samples. This will change the statistics of the background somewhat but will
increase the probability of detection for low SNR targets (Sect. 4.2). This procedure
results in a timeseries with almost independent samples.

Other normalising methods were tried as well, including a recursive approach. After
each MRF iteration the mean power is calculated of all the samples in the normalising
window which are, at this iteration, classified as background. This estimate for
the background power is then used in the next iteration. This approach uses the
knowledge build up during the segmentation to improve the next iteration step. The
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Figure 1 Detection Processing chain.

trimmed-mean normaliser resulted in less false alarms than the recursive approach.
An explanation might be that it was designed to reduce clutter [2].

The normalised beam were put through a Page test detector [3]. This will result
in a initialisation for the MRF segmentation. An initial segmentation close to the
optimum one is crucial [1]. The Page test detector had a low threshold to allow for
a high probability of detection. Also a simple threshold detector was tried, resulting
in a higher number of false alarms. Also the value of the threshold was found to
be critical, a too low value resulted in a large number of false alarms, while a high
value reduced the probability of detection.
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3
Markov random fields

In this section we will give a short review of the theory of Markov random fields.
The problem is stated as a labelling problem, i.e. assigning a set of labels to image
pixels or features. For a more detailed description see [4] and [5].

3.1 Sites and labels

The labelling problem is stated in terms of a set of sites and a set of labels.

A site can represent a pixel in an image or an image-feature such as a corner point.
In the active sonar case the set of sites consists of all range/bearing cells

S = {s = {i,j}I 1 < i < nr,1 < j nb}, (1)

where n, is the number of ranges and nb is the number of beams. In the general
case the set of sites can be indexed by a single number, S = {sl, ... , SN}. A two
dimensional image can be transformed into this representation by re-indexing the
pixels, and then N = nr x nb.

A label is an event that may occur at a site. Let L be a set of labels. A set of labels
may be continuous or discrete. An example of a continuous label set is the dynamic
range for an analogue pixel intensity. In the discrete case, a label assumes a discrete
value

L =AM}, (2)

where M is the number of labels.

The labelling problem is to assign a label from L to each of the sites in S. In the seg-
mentation of a sonar image, for example, the task is to assign to each range/bearing
cell a label from the set L = {background, object}.

The set

A= {Ai,..., N} (3).
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is called a labelling of the sites in S in terms of the labels in L, Ai E L. When
all the sites have the same label set L, the set of all possible labellings, called the
configuration space, is the following Cartesian product

Q2 = L x L... xL=LN, (4)

Ntimes

where N is the number of sites.

3.2 Neighbourhood system and cliques

A neighbourhood system is used to describe the relations between sites in S. A
neighbourhood system is defined as

V = {vsl 1 8 S} (5)

where v, is the set of sites neighbouring site s. The neighbouring relationship has
the following properties:

* a site is not a neighbour to itself: s V,

* the neighbouring relationship is mutual: s E Vr , r E V,.

Some neighbourhood systems are shown in Fig. 2(a)-2(b).

For a set of sites S with neighbourhood system V a clique is defined as a subset
C C S if every pair of distinct sites in C are neighbours. Also a single site c E S is
a clique.

The order of a clique corresponds to the number of elements contained in the clique:

C 1 = {iliCS}

C2 = {{i,j} I i,j E S are neighbours}
C3 = {{i,j,k} I i,j,k C S are neighbours to one other}

Fig. 2(c)-2(e) show first and second order cliques for the neighbourhood systems in
Fig. 2(a)-2(b). The 4 connection neighbourhood 2(a) has only second order cliques
2(d). The other two neighbourhood systems also have diagonal second order cliques
2(e).

As the order of the neighbourhood system increases, the number of cliques grow
rapidly and so do the computational expenses. We will limit ourselves to first and
second order cliques.
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(a) 4 connection neigh- (b) 8 connection neigh-
bourhood bourhood

(c) (d) (e)

Figure 2 Neighbourhoods and cliques

3.3 Markov random fields

Let A = A 1,... ,AN be a family of random variables defined on the set of sites S,
where each variable Ai takes a value Ai in the set of labels L. A is called a random
field. A realisation A = A1, .... , AN E Q is called a configuration of A. For a discrete
label set L, the probability that random variable Xi takes value Ai is denoted P(Ai =

Ai), and the joint probability is denoted P(A = A) = P(A 1 = A1,...,AN = AN).

The random field A is called a Markov random field on S with respect to a neigh-
bourhood system V if and only if:

P(A = A) > 0, VA E Q (positivity)

P(AiiAs\{i}) = P(A = AiIA,,) (Markovianity), (6)

where AS\{I} is set of labels at the sites in S except i, and A\, = {Aj Ij E vi} are the
labels of the neighbours of i.

The positivity assumption can usually be satisfied in practice. The Markovianity
describes the local characteristics of A, the label at a site is dependent only on those
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at the neighbouring sites. It is always possible to select a neighbourhood such that
the Markovian property holds, the entire set of sites. Any field A is an MRF with
respect to such a neighbourhood system.

3.4 Gibbs Random Fields

A set of random variables W is said to be a Gibbs random field (GRF) on S with

respect to V if and only if its configurations follow a Gibbs distribution:

P = U(w/T S (7)

where Z = EwZý2(exp-U(w)/T) is called the partition function, T is constant

called the temperature, and U(w) is the energy function. The energy function is a

sum of clique potentials over all possible cliques C

U(w) V(W). (8)
CEC

3.5 Markov-Gibbs equivalence

An MRF is characterised by its local properties (the Markovianity) whereas a GRF

is characterised by its global properties (the Gibbs distribution). The Hammersley-

Clifford theorem establishes the equivalence of these two types of properties. The
theorem states that W is a MRF on S with respect to neighbourhood V if and only
if W is a GRF. A proof can be found in e.g. [6].

The Markov-Gibbs equivalence makes it possible to determine the optimal labelling

for a set of sites, a global property, by only considering neighbour interactions, a
local property.

3.6 Bayes labelling

The Bayes rule states that

P(A=AIZ=z)=P(Z = zIA = A)P(A = A) (9)
P(Z = z)

where P(A = AIZ = z) is the a posteriori probability of labelling A given sonar
image z, P(Z = z1A = A) is the conditional probability, P(A = A) is the a priory
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probability and P(Z = z) is a constant for a given sonar image Z = z. Using the

definition of the MRF we have

P(Aj = AjIAs\{j}) =P(A, AiIA~i). (10)

The conditional probability P(Z = zlA = A) models the probability of the sonar

image given a certain labelling. The a priory probability P(A = A) allows us to

model the physical knowledge of the sonar image, i.e. the mapping of the sonar

image onto physical space. This includes the relation of labels of neighbouring

pixels.

The goal is, given a sonar image z = {Z1,..., ZN}, to determine the optimum la-

belling of the range/bearing cells. The maximum a posteriori (MAP) estimate is

the estimate that maximises the a posteriori probability. Using the Bayes rule this

leads to

ýopt = argmaxP(A= IZ=z)

= argmaxP(Z = zA = A)P(A = A) (11)

Because of the Markov-Gibbs equivalence the probabilities can be modelled by a

Gibbs distribution. The maximisation of the product of the two probabilities in (11)

is then equivalent to the minimisation of sum of two energy terms, the conditional

energy U(Z = zjA = A), and the prior energy U(A = AIA)).

ýopt = arg min(U(Z = zIA = A) + U(A = A)). (12)
AEfQ

3.7 Optimisation algorithm

For small images it would be feasible to calculate the energy (12) for each possible

configuration and choosing the one with minimal energy. For realistic images the

number of configurations makes it impractical to do an exhaustive search over all

possible configurations. Therefore we have to use an optimisation algorithm. These

algorithms can be divided into two classes, global methods and local methods.

Many combinatorial minimisation problems like the discrete labelling problem con-

sidered here are frustrated systems, i.e. the energy surface has many local minima

with almost equal energy. This makes finding the true global minimum hard, but a

close local minimum might be good enough.

Global optimisation methods can escape from local minima by sometimes allowing

an increase in energy. These global algorithms include genetic algorithms [7] and
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simulated annealing [8]. A disadvantage of these methods is that they are compu-
tational intensive.

We will use a local method called iterated conditional modes (ICM) [9]. The main
advantages of this method is that it is guaranteed to converge and its speed. Being
a local method it can become trapped in a local minimum. This should not be a
problem as long as we can start at a good initial point fairly close to the global
minimum. In our case such an initialisation is available. The algorithm consists of
the following steps:

* Determine an initial configuration AM°) close to the optimal configuration.

* Scan the set of sites S. Each site s, at iteration k, is characterised by the pixel

value z,, its label A(k) and the labels A(k) of its neighbours. For each possible
label A E L determine the conditional energy U(Alzs) and choose the one with
the smallest energy.

* Continue scanning until a stop criterium is reached.

If the energy (12) contains some adjustable parameters it is possible to change them
at each iteration, thereby allowing the modelling to change as the solutions is moving
towards the energy minimum.

Another possibility is to estimate model parameters during ICM [9]. For example a
parameter 0 in the a priory probability can be estimated by the maximum likelihood
method, i.e., after each iteration use the current labelling Ai to obtain a new estimate

= 4 which maximises EEs P(Ai; 0). An example is given in Sec. 4.3.1.

NATO UNCLASSIFIED - 10-
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4
Markov random fields for Active Sonar

4.1 Introduction

For the MAP optimisation of the MRF two probabilities must be defined, the con-

ditional probability P(Z = zIA = A) and the a priori probability P(A = A). The

different terms in the energy will compete to determine the new label at the site.

Consider for example the schematic example in Fig. 3. We are trying to determine

the new label for the central pixel. It has three neighbours with an object label and

11 neighbours with a background label. Therefore it is likely to become a background

pixel, unless its intensity is too high, in which case it will remain an object pixel.

4.2 Likelihood energy

The likelihood energy U(Z = z1A = A) corresponds to the conditional probability

P(Z = zIA = A). It allows us to model the influence of the measured pixel value on

the pixel label. We assume that background and object pixels have well separated

distributions. Then the conditional probability can be implemented by a simple

threshold crossing [1]. A pixel value below the threshold, zt, will have a fixed

probability p that it is a background pixel, while a pixel value above the threshold

will have fixed probability q that it is an object pixel

If z < zt then P(zIO) = p (13)

P(zll) = 1 -p (14)

If z > zt then P(zl0) = 1 - q (15)

P(zll) = q. (16)

If we ignore constant terms the likelihood energy is

If z < zt then U(zJ0) = - ln(p) (17)

U(zl1) = -ln(1 - p) (18)

If z > zt then U(zI0) = - ln(1 - q) (19)

U(zl1) = - ln(q). (20)
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Note that it would be more correct to use P(z 1) = 1 - q and P(zIO) 1 - p (see
(21) and (22)). Since the final results are not sensitive to either choice we decided
to keep the conditional probability from [1].

Figure 4 shows the histograms of background pixels and Page detections. The
background pixels are all those not detected by the Page test. In Fig. 4(a) the
timeseries is sampled at 250 Hz, while in Fig. 4(b) the sampling frequency was
reduced by a factor of two to 125 Hz, by taking the maximum in a window of two
samples, resulting in a timeseries with almost independent samples. The solid lines
shows a Rayleigh fit through the background histogram and a noncentral Rayleigh
pdf with 8.5 dB SNR.

In Fig. 4(a) he Rayleigh distribution fits the background well. This is confirmed
by both the X2-test and the Kolmogorov-Smirnov test[10]. The thinned out data
(Fig. 4(b)) does not fit the Rayleigh distribution as well, so taking the maximum
of every two samples changes the statistics of the timeseries. This is still preferred
over taking every second sample which will decrease the probability of detection for
low SNR targets.

The background and object distributions are well separated, so the likelihood energy
(13-16) makes sense. From Fig. 4 we see that p and q can be determined from the
cumulative probability densities (CDFs):

jZt fo (z)dz

p j (fo(z) + fi(z))dz0+

q It fi• f(z) dz (2

(fo (z) + fl (z)) dz'

where fo(z) is the background pdf and fl(z) is the object pdf.

We model the object pdf with a noncentral Rayleigh distribution. Note that this is
just an approximation, the object pixels correspond to different returns with different
SNR. Even so the approximation is appropriate. A reasonable fit is a noncentral
Rayleigh pdf with 8.5 dB SNR, a good choice for the threshold is zt = 2. With these
distributions we get p = 0.8 and q = 0.97. This is confirmed by the cumulative
histograms of the data.

NATO UNCLASSIFIED - 12-
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Figure 3 The influence of neighbours

I 1.
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(a) Sampled at 250 Hz (b) Sampled at 125 Hz

Figure 4 Histograms of background and Page detections, (a) sampled at 250 Hz,
(b) sampled at 125 Hz, by taking the maximum over two samples. The solid lines
show a Rayleigh pdf and a noncentral Rayleigh pdf with 8.5 dB SNR.
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Figure 5 Flipping of pixel from iteration to iteration

4.3 Prior energy

The prior energy U(A = A) allows the modelling of the physical knowledge of the
sonar image. It includes two terms:

U(A = A) = -a ln(c,) -/3 E ct,3j(Aj, A), (23)
JEVs

where A is 0 for background pixel or 1 for an object pixel, a and /3 are homogenising
constants, c, is a weight of the first order clique, ct,j are weights of the second order
cliques and 6(a, b) = 1 if a = b and 0 otherwise.

The homogenising constants are increased every iteration. This allows acceleration
of regularisation without removing small objects too quickly, slowly moving from
a conditional probability dominant model to an a priori dominant model [9]. We
choose a = ko3, where k is a constant, and let /3 increase every iteration from 0.5 in
steps of 0.1 to 1. The optimal value for k is determined in Sec. 5.

The neighbourhood chosen is a window of five range cells by three beams. The
five range cells span a length of around 30 m, which is about half the length of a
typical target. The size of neighbourhood window determines the appropriate range
of values for a and /3.

4.3.1 Single order clique

The first order clique is implemented as a Markov chain from iteration to iteration
(Fig. 5) [1]. This allows small objects surrounded by background pixels to behave
differently from small clusters of background pixels surrounded by object pixels.
The idea is that targets can correspond to a small number of range/bearing cells,
so we don't want small objects to disappear too easily. On the other hand we want
small holes in an object to be filled quite rapidly.

NATO UNCLASSIFIED - 14-
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z170
p1  <p 11

Figure 6 Transition probabilities

Going from iteration n to n + 1 we can define transition probabilities (Fig. 6)

p( -n+l) = 01A n) = 0) = Poo (24)

P(A-n+)= 1IAn) =0) = Pl0=I-Poo (25)

P(A(n+l) = 01A~n) = 1) = P01o= 1 -Pl (26)

P(A-n+') = IIA•n) = 1) = Plu- (27)

The value of poo should not be too big if we want fragmented objects to merge into
one object. The size of the smallest detectable object is determined by P11, it should
be close to one. The weight coefficient for the first order clique is now given by

c. = (poo0(A,,0)-+po01(As,1))J(A,0)-+

(pl0o(A.s,0) +pll(As, 1))6(A, 1)
= (poo0(A,8,0)+ (1 -poo)5(A,,1))3(A,O) +

((1 -- pll)6(A, 0) + p 1l6(A(, i))3(A, 1) (28)

where A, is the label of site s at iteration n, and A is the argument of (23).

The performance of the algorithm is rather sensitive to the value of Pl1. The op-
timum value might also depend on the data set used. A solution is to estimate it
during the optimisation [9].

After each iteration we determine the maximum likelihood estimate Pll which max-
imises the joint probability F1-IS P(Ai; P11)

S nil , (29)
nil +-{ n0

where nij the number of transitions from label j to label i. This estimate is then
used for the following iteration. As the segmentation converges nol --* 0 so that
Pll -- 1. Because we do not want Pll to become too small in the early iterations
the estimate is used only if it increases p1l.

- 15- NATO UNCLASSIFIED



NATO UNCLASSIFIED SACLANTCEN SR-307

A similar maximum likelihood estimate can be formed for P00. For this estimate
also P00 --+ 1 as the segmentation converges. Because we want to keep P00 small, the
estimate is not used and we keep it fixed at P00 = 0.5.

4.3.2 Second order cliques

The second order cliques allows the neighbourhood to influence the new label at a
site. The sonar image contains two kinds of neighbours, cells in the same beam as
the site we are considering and cells in different beams. With increasing range intra-
beam neighbours remain a constant physical distance to the site while the centers
inter-beam neighbours will increase the separation in physical space. Therefore in
[1, 11] it was proposed to introduce a range and beam dependent weight

ct = 1 for intra-beam links (30a)

ct = ((R/Ro) sin(0/2))- for inter-beam links (30b)

where 0 is the angle between the beams in which the pixels of interest lie, R is the
range of the central pixel and R0 is a given minimum radius. The weight from [11]
extends the work in [1] where F = 0.5.

To evaluate the notion of different weights for intra-beam and inter-beam neighbours,
we analyse the probability for an object pixel to remain an object pixel. Let the
neighbourhood be N range cells by M beams, and consist of r < N - 1 intra-beam
pixels and s < N(M - 1) inter-beam pixels with an object label. If the pixel value
is above the threshold and, at iteration n, has an object label then the posterior
energies are

U01 = -ln(1 -q) - aln(1 -pll) - (N- r - 1)fl- ((N(M- 1)- s)!3ct (31)

U11 = -lnq-clnp1i-rfr3-sfct, (32)

where ct is according to (30b).

The new label remain an object label if U11 < Uoi or

In q + aln P11 -P (N - 2r - 1 + (N(M - 1) - 2s)ct) > 0. (33)
1 -q I - P1

These equations allow us to determine, for fixed P11, the range of values of a and/3
for which the new label will stay an object label. Because 0.5 < q, Pu < 1 there is
no restriction on a and 3 if

N - 2r - 1 + (N(M - 1) - 2s)ct < 0. (34)

This means that, independent of the parameter values, the object will be stable.
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The probability for a background pixel flipping to an object pixel gives the same
result if P00 < 0.5.

As an example consider an 5 x 3 neighbourhood (N = 5, M = 3). If ct = 1, i.e.
all cells have the same weight, then r + s > 7, so an 8 pixel object is stable. The
stability of smaller objects depends on the parameters. If ct = 0.5, then 2r + s > 9,
so for example a 6 pixel object consisting of 5 intra-beam pixels and 1 inter-beam
pixel is stable. For ct = 0.25, then 4r + s > 13, so an 5 pixel object consisting of 4
intra-beam pixels and 1 inter-beam pixel is stable. Reducing the weight to ct = 0,
i.e. the neighbourhood consists of 5 range cells, gives r > 2, so a 3 range pixel object
is stable.

We see that reducing ct, and thus the weight of inter-beam pixels, makes the size
of unconditionally stable objects smaller. Therefore at increasing range, and thus
decreasing ct, the number of remaining small objects will increase. This is not
desirable because we want the stability of objects to be controlled by pi, a, and
13. We conclude that it is better to let all the neighbours have the same weight, i.e.
F = 0 in (30b) so that ct = 1 for all neighbour cells.

Now choose ce = k1 with k fixed over all iterations, ct = 1 and let there be r object
neighbours, then the object will be stable if

log + (klog - (NP1- 1 - 2Nr))3 > 0 (35)

q P11

or

r (NM- 1- klog P11 _log q/1. (36)2 N-P11 -q

From (36) we see that the smallest size of objects increases with increasing 13, in-
creasing k and decreasing p11. Because 3 is increased at every iteration (0.5 < 13 < 1)
at the beginning of the segmentation small objects remain, while later on small ob-
jects will be removed. This allows a big object fragmented in several small pieces to
merge into one big object and small isolated objects to be removed. The value of k
and Pl allows us to tune the model to get a big reduction of the false alarm objects
while retaining the target.
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5
Results

5.1 Parameter optimisation

The algorithm was applied to a data set of 200 pings, each with a pulse repetition
interval of 60 seconds. They contain areas of extended reverberation and clutter as
well as areas of clear display, and thus highly suited for this study. Each ping has
previously been investigated in order to locate significant targets of opportunity, 175
pings contain 1 or 2 such targets. This ground knowledge is used to test the per-
formance of the algorithm. The data were processed using the detection processing
method described in Sec. 2. The Page test detected all target opportunities, i.e. it
had 100% probability of detection.

There are several ways to quantify how well the algorithm performs. We will use the
following measures of performance (MOPs): probability of detection, probability of
false alarm, number of false alarm objects and computation time.

In an operational situation it is important that the signal processing can be done in
real time, the processing has to be completed before the next ping of data arrives.
For the present data set this time is 60 seconds. The MRF algorithm is computation-
ally intensive, it consists of relatively simple operations but have to be repeatedly
performed over the entire sonar picture, 5001 range cells by 86 beams in our case.
Even so, due to an efficient implementation, the algorithm runs in real time.

The probability of detection is calculated by counting the number of target detections
which remain after the MRF segmentation and dividing by the total number of
detection opportunities. The probability of false alarm can be estimated by counting
the range/bearing cells which do not correspond to a known target and dividing by
the total number of range/bearing cells.

An object is a set of detections over range/bearing cells which are connected with
an 8-connection window[12]. The number of false alarm objects are all the objects
which do not correspond to a known target. Note that this is different from the
number of false alarms. The notion of false alarm objects is more appropriate in
classification because a classifier can consider a set of connected detections as one
object entity. For example a tracker does not need to track all individual cells in a
detected object, but can represent it by the cell with the largest pixel value.
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The normalised data and the Page test detections were used as inputs to the MRF
algorithm. Two types of MRF models were tried, one with p1i fixed over all iter-
ations, and one with Pll adjusted according to the maximum likelihood estimate
(Sect. 4.3.1). Both models had / starting from 0.5, increasing 0.1 at each iteration,
up to 1.0, a = ko, with k = 1, 2,3. The starting value of p1l was from 0.8 up to
0.975. By running the MRF models for all these parameter values we can determine
the optimum set of parameter values which gives the maximum reduction in false
alarm objects while still retaining a high probability of detection.

Figure 7 show the results for p1l fixed. The graph shows the probability of detection
against the number of false alarm objects. Note that this is not a ROC curve, as
the horizontal axis shows number of false alarm objects as apposed to false alarm
probability. The big circle shows the Page detections, with 100% probability of
detection. The top axis shows the reduction of the number of false alarm objects
compared to the Page test. The green triangles are for k = a/= = 1, the red
diamonds are for k = 2, while the blue squares are for k = 3. The different points
on the lines are for different values of Pn'. Table 2 shows the numbers, the columns
show, respectively, the value of P1l, the value of k = a/0, the number of targets
detected, the probability of detection, the number of false alarm objects and the
reduction of false alarm objects compared to the Page test.

Figure 8 and Table 3 show the results for adaptive P11.
Table 1 shows typical values of Pl1 at each iteration. At iteration P11
the first few iterations Pll is fixed at the starting value 1 0.900
while at the later iterations it quickly goes toward 1. 2 0.900

3 0.952
4 0.972

From the results we see that, as expected, both the 4 0.990

probability of detection and the remaining number of 6 0.997

false alarm objects increases for increasing k and p1l.
For high k and Pii all the target opportunities are de- Table 1
tected, resulting in a reduction in false alarm objects
without any reduction in probability of detection.

When P1l is updated according to the maximum likelihood estimate there is little
dependence of the results on the initial value of pul, especially for k = 1, 2, making
the algorithm more robust. It does result in a slightly lower reduction of false alarm
objects.

The optimum set of parameter values is k = 1 and pil starting at 0.9 and updated
according to the maximum likelihood estimate.

Figures 9 and 10 show a typical example of the algorithm's results. Figure 9(a)
shows part of the sonar returns. Strong echoes from large objects are visible. The
sonar image has a spiky nature, resulting in a large number of clutter detections.
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Figure 7 Results for Pil fixed for all iterations. The big circle shows the Page
detections, e.g. 1001% probability of detections. The top axis shows the reduction of
the number of false alarm objects compared to the Page test. The green triangles are
for k = /3=1, the red diamonds are for k =2, while the blue squares are for
k =3. The different points on the lines are for different values of Pil.
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Figure 9(b) shows the detections, the red object in the centre is the detection of
a surface ship. Some detections from large objects are present but are fragmented
into several separate pieces. The detections include a lot of small clutter objects. In
Fig. 9(c) the result of the MRF segmentation is shown. Most of the small clutter
has been removed, separate fragments of large objects have been segmented into
larger objects, the target is still detected. Over the entire sonar picture the number
of false alarm objects is reduced by 85%.

The convergence of the algorithm is illustrated in Fig. 10, the circles show the number
of objects left after each iteration, the triangles show the number of flipped pixels
divided by the number of objects. The number of objects reaches a stable value and
the number of flips becomes small compared to the number of objects, thus showing
convergence.

5.2 SNR simulation

In this section we will investigate the influence of target SNR on the probability of
detection after MRF segmentation. Curves are generated of mean number of false
alarm objects against probability of detection, one curve for each target SNR, the
points on the curve correspond to different values of the Page test detector threshold.
Again note that these are not ROC curves.

We generate simulated sonar pictures based on real world data. An artificial target,
with known SNR, is inserted into a real sonar picture at random range and bearing.
The artificial target is taken from a ping with a high SNR target detection and

scaled to obtain the desired SNR. By applying this procedure to all pings we obtain
a set of sonar pictures with known targets under different types of background.

For the SNR estimation we use the modified 'double boxcar' averaging technique
described in [13]. The average power is calculated in 1 s windows 1 s before and
1 s after the echo, the noise level (NL) is the minimum of the two values. The
echo level (EL) is the peak value of the echo, the SNR then becomes SNR = EL -
min(NLI, NL 2 ). Note that this notion of SNR from real data should not be confused
with the theoretical non-centrality parameter used in Fig. 4.

The MRF algorithm is then applied to the simulated sonar pictures, again with k = 1
and pl starting at 0.9. The probability of detection for the given SNR is estimated
by the number detections divided by the number of simulated sonar pictures.

Figure 11 shows the results of the Page test detector, Fig 12 shows the results of
the MRF segmentation. Targets stronger than about 14 dB have more than 90%
probability of detection for the Page test detector with a low threshold. After MRF
segmentation the probability of detection drops for targets weaker than 18 dB. Note
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Figure 9 Results for one ping.
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Figure 10 Convergence of the algorithm, the circles show the number of objects
left after each iteration, while the triangles show the number of flipped pixels divided
by the number of objects.

that the mean reduction in false alarm objects is almost 80%.
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6
Conclusions

This study demonstrates that image processing can reduce the number of false con-
tacts considerably without substantial reduction in detection probability. The image
processing technique is based on a Markov random field model which allows the phys-
ical and statistical knowledge of the sonar picture to be used in the modelling. The
algorithm converges quickly and can be executed in real time or near real time. The
model parameters were tuned for best performance.

The algorithm performs well, the number of false contacts reduces by about 80%
while the probability of detection remains above 90%. The segmentation removes
some of the weaker targets. This should not be a big problem as the target echo has
typically a high SNR. Even if the target echo is weak it might still be detected over
several pings.

Future work includes testing the algorithm on other data sets. Some of the param-
eters of the MRF model depend on the data used. Even so the segmentation results
are rather robust against small variations of these parameters so their precise value
is not important. Other possible enhancements include coupling the algorithm to
tracking and classification algorithms. Target tracking can be implemented by ex-
tending the MRF model to multiple pings, introducing a neighbourhood over three
dimensions, range, bearing and ping. The three dimensional objects obtained can
then be classified according to their slope. Another possibility is a tracking algo-
rithm not based on MRF but which uses the baricentres of the segmented objects,
dramatically reducing the work compared with an algorithm which has to track
every range-bearing cell.

The segmented objects can also be used to extract classification clues from a single
ping sonar image, without looking of the ping history. Classification clues include
echo shape and object size. The object size is an important clue, because the
classification clusters together detections from the same physical object, size can
be used to remove reverberation features which are to big to be from a target.
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